Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.027
Filtrar
1.
Virol J ; 21(1): 67, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509569

RESUMO

Since 1997, highly pathogenic avian influenza viruses, such as H5N1, have been recognized as a possible pandemic hazard to men and the poultry business. The rapid rate of mutation of H5N1 viruses makes the whole process of designing vaccines extremely challenging. Here, we used an in silico approach to design a multi-epitope vaccine against H5N1 influenza A virus using hemagglutinin (HA) and neuraminidase (NA) antigens. B-cell epitopes, Cytotoxic T lymphocyte (CTL) and Helper T lymphocyte (HTL) were predicted via IEDB, NetMHC-4 and NetMHCII-2.3 respectively. Two adjuvants consisting of Human ß-defensin-3 (HßD-3) along with pan HLA DR-binding epitope (PADRE) have been chosen to induce more immune response. Linkers including KK, AAY, HEYGAEALERAG, GPGPGPG and double EAAAK were utilized to link epitopes and adjuvants. This construct encodes a protein having 350 amino acids and 38.46 kDa molecular weight. Antigenicity of ~ 1, the allergenicity of non-allergen, toxicity of negative and solubility of appropriate were confirmed through Vaxigen, AllerTOP, ToxDL and DeepSoluE, respectively. The 3D structure of H5N1 was refined and validated with a Z-Score of - 0.87 and an overall Ramachandran of 99.7%. Docking analysis showed H5N1 could interact with TLR7 (docking score of - 374.08 and by 4 hydrogen bonds) and TLR8 (docking score of - 414.39 and by 3 hydrogen bonds). Molecular dynamics simulations results showed RMSD and RMSF of 0.25 nm and 0.2 for H5N1-TLR7 as well as RMSD and RMSF of 0.45 nm and 0.4 for H5N1-TLR8 complexes, respectively. Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) confirmed stability and continuity of interaction between H5N1-TLR7 with the total binding energy of - 29.97 kJ/mol and H5N1-TLR8 with the total binding energy of - 23.9 kJ/mol. Investigating immune response simulation predicted evidence of the ability to stimulate T and B cells of the immunity system that shows the merits of this H5N1 vaccine proposed candidate for clinical trials.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas , Animais , Humanos , Virus da Influenza A Subtipo H5N1/genética , Epitopos de Linfócito T/genética , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Epitopos de Linfócito B , Biologia Computacional/métodos , Simulação de Acoplamento Molecular , Vacinas de Subunidades/genética
2.
Viruses ; 16(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543838

RESUMO

The SARS-CoV-2 Omicron sub-variants BA.2.86 and JN.1 contain multiple mutations in the spike protein that were not present in previous variants of concern and Omicron sub-variants. Preliminary research suggests that these variants reduce the neutralizing capability of antibodies induced by vaccines, which is particularly significant for JN.1. This raises concern as many widely deployed COVID-19 vaccines are based on the spike protein of the ancestral Wuhan strain of SARS-CoV-2. While T cell responses have been shown to be robust against previous SARS-CoV-2 variants, less is known about the impact of mutations in BA.2.86 and JN.1 on T cell responses. We evaluate the effect of mutations specific to BA.2.86 and JN.1 on experimentally determined T cell epitopes derived from the spike protein of the ancestral Wuhan strain and the spike protein of the XBB.1.5 strain that has been recommended as a booster vaccine. Our data suggest that BA.2.86 and JN.1 affect numerous T cell epitopes in spike compared to previous variants; however, the widespread loss of T cell recognition against these variants is unlikely.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19 , Epitopos de Linfócito T/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , Linfócitos T , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Cancer Res Commun ; 4(4): 958-969, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506662

RESUMO

Mimotopes of short CD8+ T-cell epitopes generally comprise one or more mutated residues, and can increase the immunogenicity and function of peptide cancer vaccines. We recently developed a two-step approach to generate enhanced mimotopes using positional peptide microlibraries and herein applied this strategy to the broadly used H-2Kb-restricted murine leukemia p15E tumor rejection epitope. The wild-type p15E epitope (sequence: KSPWFTTL) was poorly immunogenic in mice, even when combined with a potent peptide nanoparticle vaccine system and did not delay p15E-expressing MC38 tumor growth. Following positional microlibrary functional screening of over 150 mimotope candidates, two were identified, both with mutations at residue 3 (p15E-P3C; "3C," and p15E-P3M; "3M") that better induced p15E-specific CD8+ T cells and led to tumor rejection. Although 3M was more immunogenic, 3C effectively delayed tumor growth in a therapeutic setting relative to the wild-type p15E. As 3C had less H-2Kb affinity relative to both p15E and 3M, 15 additional mimotope candidates (all that incorporated the 3C mutation) were assessed that maintained or improved predicted MHC-I affinity. Valine substitution at position 2 (3C2V, sequence: KVCWFTTL) led to improved p15E-specific immunogenicity, tumor rejection, and subsequent long-term antitumor immunity. 3C, 3M, and 3C2V mimotopes were more effective than p15E in controlling MC38 and B16-F10 tumors. T-cell receptor (TCR) sequencing revealed unique TCR transcripts for mimotopes, but there were no major differences in clonality. These results provide new p15E mimotopes for further vaccine use and illustrate considerations for MHC-I affinity, immunogenicity, and functional efficacy in mimotope design. SIGNIFICANCE: The MHC-I-restricted p15E tumor rejection epitope is expressed in multiple murine cancer lines and is used as a marker of antitumor cellular immunity, but has seen limited success as a vaccine immunogen. An in vivo screening approach based on a positional peptide microlibraries is used to identify enhanced p15E mimotopes bearing amino acid mutations that induce significantly improved functional immunogenicity relative to vaccination with the wild-type epitope.


Assuntos
Neoplasias , Vacinas , Animais , Camundongos , Neoplasias/terapia , Peptídeos , Epitopos de Linfócito T/genética , Receptores de Antígenos de Linfócitos T
4.
Zhonghua Yi Xue Za Zhi ; 104(11): 850-856, 2024 Mar 19.
Artigo em Chinês | MEDLINE | ID: mdl-38462361

RESUMO

Objective: To evaluate the risk prediction and assessment function of HLA-DPB1 T-cell epitope (TCE) model and expression model in human leukocyte antigen (HLA)-matched unrelated hematopoietic stem cell transplantation (MUD-HSCT) with HLA-DPB1 mismatching. Methods: A total of 364 (182 pairs) potential MUD-HSCT donors and recipients confirmed by HLA high-resolution typing in Shaanxi Blood Center from 2016 to 2019 were analyzed retrospectively. Of the 182 recipients, there were 121 males and 61 females with an average age of (26.3±14.2) years. Of the 182 donors, there were 148 males and 34 females with an average age of (33.7±7.5) years. Polymerase chain reaction-sequence-based typing (PCR-SBT), next-generation sequencing (NGS) and polymerase chain reaction-sequence specific oligonucleotide probe (PCR-SSO) based on LABScan®3D platform were used for high-resolution typing of HLA-A, B, C, DRB1, DQB1, DPB1 gene, and PCR-SBT was used for single nucleotide polymorphism (SNP) typing. TCE model and expression model were used to predict and evaluate the HLA-DPB1 mismatch pattern and acute graft-versus-host-disease (aGVHD) risk. Results: A total of 26 HLA-DPB1 alleles and their 3'-UTR rs9277534 SNP genotypes were detected in this study population, and two new alleles HLA-DPB1*1052∶01 and HLA-DPB1*1119∶01 were found and officially named. The overall mismatch rate of HLA-DPB1 in MUD-HSCT donors and recipients was 90.66% (165/182). In TCE model, the HLA-DPB1 mismatch rates of permissible mismatch (PM) and non-permissible mismatch (non-PM) were 47.80% (87/182) and 42.86% (78/182), respectively. The non-PM in GvH direction was 13.73% (25/182), and which in HvG direction was 29.12% (53/182). A total of 73 pairs of donors and recipients in TCE model met the evaluation criteria of expression model. Among of TCE PM group, recipient DP5 mismatches accounted for 34.25% (25/73) were predicted as aGVHD high risk according to expression model. For the TCE non-PM group, both the recipient DP2 mismatches of 6.85% (5/73) and recipient DP5 mismatches of 10.86% (8/73) were predicted to be at high risk for aGVHD. Risk prediction by TCE model and expression model was 27.27% concordant and 16.97% unconcordant. Conclusions: TCE model and expression model are effective tools to predict aGVHD risk of MUD-HSCT. Comprehensive application of the two models is helpful to the hierarchical assessment of HSCT risk.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Masculino , Feminino , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Epitopos de Linfócito T/genética , Estudos Retrospectivos , Cadeias beta de HLA-DP/genética , Doadores não Relacionados , Doença Enxerto-Hospedeiro/genética
5.
Microb Pathog ; 189: 106572, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354987

RESUMO

The JCV (John Cunningham Virus) is known to cause progressive multifocal leukoencephalopathy, a condition that results in the formation of tumors. Symptoms of this condition such as sensory defects, cognitive dysfunction, muscle weakness, homonosapobia, difficulties with coordination, and aphasia. To date, there is no specific and effective treatment to completely cure or prevent John Cunningham polyomavirus infections. Since the best way to control the disease is vaccination. In this study, the immunoinformatic tools were used to predict the high immunogenic and non-allergenic B cells, helper T cells (HTL), and cytotoxic T cells (CTL) epitopes from capsid, major capsid, and T antigen proteins of JC virus to design the highly efficient subunit vaccines. The specific immunogenic linkers were used to link together the predicted epitopes and subjected to 3D modeling by using the Robetta server. MD simulation was used to confirm that the newly constructed vaccines are stable and properly fold. Additionally, the molecular docking approach revealed that the vaccines have a strong binding affinity with human TLR-7. The codon adaptation index (CAI) and GC content values verified that the constructed vaccines would be highly expressed in E. coli pET28a (+) plasmid. The immune simulation analysis indicated that the human immune system would have a strong response to the vaccines, with a high titer of IgM and IgG antibodies being produced. In conclusion, this study will provide a pre-clinical concept to construct an effective, highly antigenic, non-allergenic, and thermostable vaccine to combat the infection of the John Cunningham virus.


Assuntos
Vírus JC , Vacinas , Humanos , Epitopos/genética , Simulação de Acoplamento Molecular , Escherichia coli , Vacinologia , Vacinas de Subunidades/genética , Epitopos de Linfócito T/genética , Biologia Computacional , Epitopos de Linfócito B , Simulação de Dinâmica Molecular
6.
Vaccine ; 42(7): 1630-1647, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38336561

RESUMO

Emergence of SARS-CoV-2 Omicron variant has presented a significant challenge to global health, demanding rapid development of mRNA-based vaccines. The mRNA-guided vaccine platforms offer various advantages over traditional vaccine platforms. The mRNA by nature is a short-lived molecule that guides the cells to manufacture antigenic proteins. In the present work, we have created an omicron spike antigenic protein sequence characterized by base composition analysis, modeling, and docking with the ACE-2 receptor. Further, we predicted the B-cell and T-cell epitopes followed by antigenicity, toxicity, and allergenicity. Finally, the protein was reverse translated, codon-optimized, and encoding mRNA sequence was checked for its stability by predicting the secondary structures. A comprehensive examination of in-silico data revealed 628.2 as a potent antigenic candidate that was finally used in Gemcovac®-OM, a heterologous booster mRNA vaccine for COVID-19.


Assuntos
COVID-19 , Vacinas de mRNA , Humanos , 60444 , Vacinas contra COVID-19 , SARS-CoV-2/genética , COVID-19/prevenção & controle , Antígenos Virais , Epitopos de Linfócito T/genética , RNA Mensageiro , Epitopos de Linfócito B/genética , Simulação de Acoplamento Molecular
7.
J Med Virol ; 96(2): e29452, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314852

RESUMO

The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been accompanied by the emergence of viral mutations that pose a great challenge to existing vaccine strategies. It is not fully understood with regard to the role of mutations on the SARS-CoV-2 spike protein from emerging viral variants in T cell immunity. In the current study, recombinant eukaryotic plasmids were constructed as DNA vaccines to express the spike protein from multiple SARS-CoV-2 strains. These DNA vaccines were used to immunize BALB/c mice, and cross-T cell responses to the spike protein from these viral strains were quantitated using interferon-γ (IFN-γ) Elispot. Peptides covering the full-length spike protein from different viral strains were used to detect epitope-specific IFN-γ+ CD4+ and CD8+ T cell responses by fluorescence-activated cell sorting. SARS-CoV-2 Delta and Omicron BA.1 strains were found to have broad T cell cross-reactivity, followed by the Beta strain. The landscapes of T cell epitopes on the spike protein demonstrated that at least 30 mutations emerging from Alpha to Omicron BA.5 can mediate the escape of T cell immunity. Omicron and its sublineages have 19 out of these 30 mutations, most of which are new, and a few are inherited from ancient circulating variants of concerns. The cross-T cell immunity between SARS-CoV-2 prototype strain and Omicron strains can be attributed to the T cell epitopes located in the N-terminal domain (181-246 aa [amino acids], 271-318 aa) and C-terminal domain (1171-1273 aa) of the spike protein. These findings provide in vivo evidence for optimizing vaccine manufacturing and immunization strategies for current or future viral variants.


Assuntos
COVID-19 , Vacinas de DNA , Animais , Camundongos , Humanos , Epitopos de Linfócito T/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Imunidade Celular , Mutação , Interferon gama , Anticorpos Antivirais , Anticorpos Neutralizantes
8.
Front Immunol ; 15: 1328905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318166

RESUMO

Background: The coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has decreased significantly, the long-term outlook of COVID-19 remains a serious cause of morbidity and mortality worldwide, with the mortality rate still substantially surpassing even that recorded for influenza viruses. The continued emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, has prolonged the COVID-19 pandemic and underscores the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. Methods: We designed a multi-epitope-based coronavirus vaccine that incorporated B, CD4+, and CD8+ T- cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-variant SARS-CoV-2 vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. Results: The pan-variant SARS-CoV-2 vaccine (i) is safe , (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells , and (iii) provides robust protection against morbidity and virus replication. COVID-19-related lung pathology and death were caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2), and Omicron (B.1.1.529). Conclusion: A multi-epitope pan-variant SARS-CoV-2 vaccine bearing conserved human B- and T- cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that facilitated virus clearance, and reduced morbidity, COVID-19-related lung pathology, and death caused by multiple SARS-CoV-2 VOCs.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Proteção Cruzada , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito T/genética , Pandemias , SARS-CoV-2/genética
9.
Emerg Microbes Infect ; 13(1): 2306959, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38240239

RESUMO

Cytotoxic T lymphocytes are key for controlling viral infection. Unravelling CD8+ T cell-mediated immunity to distinct influenza virus strains and subtypes across prominent HLA types is relevant for combating seasonal infections and emerging new variants. Using an immunopeptidomics approach, naturally presented influenza A virus-derived ligands restricted to HLA-A*24:02, HLA-A*68:01, HLA-B*07:02, and HLA-B*51:01 molecules were identified. Functional characterization revealed multifunctional memory CD8+ T cell responses for nine out of sixteen peptides. Peptide presentation kinetics was optimal around 12 h post infection and presentation of immunodominant epitopes shortly after infection was not always persistent. Assessment of immunogenic epitopes revealed that they are highly conserved across the major zoonotic reservoirs and may contain a single substitution in the vicinity of the anchor residues. These findings demonstrate how the identified epitopes promote T cell pools, possibly cross-protective in individuals and can be potential targets for vaccination.


Assuntos
Epitopos de Linfócito T , Vírus da Influenza A , Humanos , Epitopos de Linfócito T/genética , Vírus da Influenza A/genética , Linfócitos T CD8-Positivos , Linfócitos T Citotóxicos , Imunidade Celular
10.
Sci Rep ; 14(1): 767, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191579

RESUMO

More than 95% of patients fall victim to primary amoebic meningoencephalitis (PAM), a fatal disease attacking the central nervous system. Naegleria fowleri, a brain-eating microorganism, is PAM's most well-known pathogenic ameboflagellate. Despite the use of antibiotics, the fatality rate continues to rise as no clinical trials have been conducted against this disease. To address this, we mined the UniProt database for pathogenic proteins and selected assumed epitopes to create an mRNA-based vaccine. We identified thirty B-cell and T-cell epitopes for the vaccine candidate. These epitopes, secretion boosters, subcellular trafficking structures, and linkers were used to construct the vaccine candidate. Through predictive modeling and confirmation via the Ramachandran plot (with a quality factor of 92.22), we assessed secondary and 3D structures. The adjuvant RpfE was incorporated to enhance the vaccine construct's immunogenicity (GRAVY index: 0.394, instability index: 38.99, antigenicity: 0.8). The theoretical model of immunological simulations indicated favorable responses from both innate and adaptive immune cells, with memory cells expected to remain active for up to 350 days post-vaccination, while the antigen was eliminated from the body within 24 h. Notably, strong interactions were observed between the vaccine construct and TLR-4 (- 11.9 kcal/mol) and TLR-3 (- 18.2 kcal/mol).


Assuntos
Infecções Protozoárias do Sistema Nervoso Central , Naegleria fowleri , Humanos , Vacinas de mRNA , Naegleria fowleri/genética , Infecções Protozoárias do Sistema Nervoso Central/prevenção & controle , Epitopos de Linfócito T/genética , RNA Mensageiro/genética
11.
Nat Biomed Eng ; 8(2): 193-200, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37996615

RESUMO

Owing to the immunogenicity of adeno-associated viruses (AAVs), gene therapies using AAVs face considerable obstacles. Here, by leveraging ex vivo T-cell assays, the prediction of epitope binding to major histocompatibility complex class-II alleles, sequence-conservation analysis in AAV phylogeny and site-directed mutagenesis, we show that the replacement of amino acid residues in a promiscuous and most immunodominant T-cell epitope in the AAV9 capsid with AAV5 sequences abrogates the immune responses of peripheral blood mononuclear cells to the chimaeric vector while preserving its functions, potency, cellular specificity, transduction efficacy and biodistribution. This rational approach to the immunosilencing of capsid epitopes promiscuously binding to T cells may be applied to other AAV vectors and epitope regions.


Assuntos
Capsídeo , Dependovirus , Capsídeo/química , Capsídeo/metabolismo , Dependovirus/genética , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/análise , Epitopos de Linfócito T/metabolismo , Leucócitos Mononucleares , Distribuição Tecidual , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo
12.
Immunol Res ; 72(1): 82-95, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37608125

RESUMO

Rickettsia prowazekii is an intracellular, obligate, gram-negative coccobacillus responsible for epidemic typhus. Usually, the infected body louse or its excrement when rubbed into the skin abrasions transmits the disease. The infection with R. prowazekii causes the highest death rate (> 20% without antibiotic treatment and now 1-7%), followed by epidemic typhus, which often manifests in unsanitary conditions (up to 15-30%). Conventionally, vaccine design has required pathogen growth and both assays (in vivo and in vitro), which are costly and time-consuming. However, advancements in bioinformatics and computational biology have accelerated the development of effective vaccine designs, reducing the need for traditional, time-consuming laboratory experiments. Subtractive genomics and reverse vaccinology have become prominent computational methods for vaccine model construction. Therefore, the RefSeq sequence of Rickettsia prowazekii (strain Madrid E) (Proteome ID: UP000002480) was subjected to subtractive genomic analysis, including factors such as non-similarity to host proteome, essentiality, subcellular localization, antigenicity, non-allergenicity, and stability. Based on these parameters, the vaccine design process selected specific proteins such as outer membrane protein R (O05971_RICPR PETR; OmpR). Eventually, the OmpR was subjected to a reverse vaccinology approach that included molecular docking, immunological simulation, and the discovery of B-cell epitopes and MHC-I and MHC-II epitopes. Consequently, a chimeric or multi-epitope-based vaccine was proposed by selecting the V11 vaccine and its 3D structure modeling along with molecular docking against TLR and HLA protein, in silico simulation, and vector designing. The obtained results from this investigation resulted in a new perception of inhibitory ways against Rickettsia prowazekii by instigating novel immunogenic targets. To further assess the efficacy and protective ability of the newly designed V11 vaccine against Rickettsia prowazekii infections, additional evaluation such as in vitro or in vivo immunoassays is recommended.


Assuntos
Rickettsia prowazekii , Tifo Endêmico Transmitido por Pulgas , Tifo Epidêmico Transmitido por Piolhos , Humanos , Proteômica , Rickettsia prowazekii/genética , Rickettsia prowazekii/metabolismo , Tifo Epidêmico Transmitido por Piolhos/microbiologia , Simulação de Acoplamento Molecular , Proteoma , Vacinologia/métodos , Biologia Computacional/métodos , Epitopos de Linfócito B , Epitopos de Linfócito T/genética , Vacinas de Subunidades
13.
Cell Host Microbe ; 32(1): 19-24.e2, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38070502

RESUMO

Effective monitoring of evolving SARS-CoV-2 variants requires understanding the potential effect of mutations on immune evasion. Here, we predicted the impact of BA.2.86-associated mutations on SARS-CoV-2-specific T cell responses. First, evaluating the effect on known experimentally defined T cell epitopes, we found that 72% and 89% of the total SARS-CoV-2 CD4 and CD8 responses were 100% conserved, with lower rates (56% and 72%) for just spike, a major structural protein. Among the mutated spike epitopes, however, 96% and 62% still bound the same reported HLA-restricting alleles. Additional prediction analyses comparing the ancestral and BA.2 sequences with BA.2.86 mutations identified several potentially novel BA.2.86 epitopes. By simulating exposure with BA.2, the large number of epitopes conserved with BA.2.86 suggests that variant-specific epitopes induced following breakthrough infection or bivalent vaccination can bridge the gap between ancestral immunization and upcoming circulating variants, allowing for a more stable T cell response across viral evolution.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Linfócitos T , Epitopos de Linfócito T/genética , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
14.
Sci Rep ; 13(1): 22356, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102157

RESUMO

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis (EBL), which has been reported worldwide. The expression of viral structural proteins: surface glycoprotein (gp51) and three core proteins - p15 (matrix), p24 (capsid), and p12 (nucleocapsid) induce a strong humoral and cellular immune response at first step of infection. CD4+ T-cell activation is generally induced by bovine leukocyte antigen (BoLA) region- positive antigen-presenting cells (APC) after processing of an exogenous viral antigen. Limited data are available on the BLV epitopes from the core proteins recognized by CD4+ T-cells. Thus, immunoinformatic analysis of Gag sequences obtained from 125 BLV isolates from Poland, Canada, Pakistan, Kazakhstan, Moldova and United States was performed to identify the presence of BoLA-DRB3 restricted CD4+ T-cell epitopes. The 379 15-mer overlapping peptides spanning the entire Gag sequence were run in BoLA-DRB3 allele-binding regions using a BoLA-DRB- peptide binding affinity prediction algorithm. The analysis identified 22 CD4+ T-cell peptide epitopes of variable length ranging from 17 to 22 amino acids. The predicted epitopes interacted with 73 different BoLA-DRB3 alleles found in BLV-infected cattle. Importantly, two epitopes were found to be linked with high proviral load in PBMC. A majority of dominant and subdominant epitopes showed high conservation across different viral strains, and therefore could be attractive targets for vaccine development.


Assuntos
Linfócitos T CD4-Positivos , Vírus da Leucemia Bovina , Animais , Bovinos , Epitopos de Linfócito T/genética , Vírus da Leucemia Bovina/genética , Produtos do Gene gag/genética , Leucócitos Mononucleares , Antígenos HLA-DR , Peptídeos
15.
Front Immunol ; 14: 1229712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022506

RESUMO

Introduction and methods: In this present work, coronavirus subfamilies and SARS-CoV-2 Variants of Concern (VOCs) were investigated for the presence of MHC-I immunodominant viral peptides using in silico and in vitro tools. Results: In our results, HLA-A*02 haplotype showed the highest number of immunodominant epitopes but with the lowest combined prediction score. Furthermore, a decrease in combined prediction score was observed for HLA-A*02-restricted epitopes when the original strain was compared to the VOCs, indicating that the mutations on the VOCs are promoting escape from HLA-A2-mediated antigen presentation, which characterizes a immune evasion process. Additionally, epitope signature analysis revealed major immunogenic peptide loss for structural (S) and non-structural (ORF8) proteins of VOCs in comparison to the Wuhan sequence. Discussion: These results may indicate that the antiviral CD8+ T-cell responses generated by original strains could not be sufficient for clearance of variants in either newly or reinfection with SARS-CoV-2. In contrast, N epitopes remain the most conserved and reactive peptides across SARS-CoV-2 VOCs. Overall, our data could contribute to the rational design and development of new vaccinal platforms to induce a broad cellular CD8+ T cell antiviral response, aiming at controlling viral transmission of future SARS-CoV-2 variants.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , SARS-CoV-2 , Epitopos de Linfócito T/genética , Antígenos de Histocompatibilidade Classe I , Antígeno HLA-A2 , Peptídeos , Antivirais
16.
Nat Immunol ; 24(11): 1890-1907, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749325

RESUMO

CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αß signatures. Suboptimal TCRαß signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.


Assuntos
Linfócitos T CD8-Positivos , Longevidade , Recém-Nascido , Humanos , Idoso , Epitopos de Linfócito T/genética , Linfócitos T Citotóxicos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T/genética
17.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37707962

RESUMO

SARS-CoV-2 is the third zoonotic coronavirus to cause a major outbreak in humans in recent years, and many more SARS-like coronaviruses with pandemic potential are circulating in several animal species. Vaccines inducing T cell immunity against broadly conserved viral antigens may protect against hospitalization and death caused by outbreaks of such viruses. We report the design and preclinical testing of 2 T cell-based pan-sarbecovirus vaccines, based on conserved regions within viral proteins of sarbecovirus isolates of human and other carrier animals, like bats and pangolins. One vaccine (CoVAX_ORF1ab) encoded antigens derived from nonstructural proteins, and the other (CoVAX_MNS) encoded antigens from structural proteins. Both multiantigen DNA vaccines contained a large set of antigens shared across sarbecoviruses and were rich in predicted and experimentally validated human T cell epitopes. In mice, the multiantigen vaccines generated both CD8+ and CD4+ T cell responses to shared epitopes. Upon encounter of full-length spike antigen, CoVAX_MNS-induced CD4+ T cells were responsible for accelerated CD8+ T cell and IgG Ab responses specific to the incoming spike, irrespective of its sarbecovirus origin. Finally, both vaccines elicited partial protection against a lethal SARS-CoV-2 challenge in human angiotensin-converting enzyme 2-transgenic mice. These results support clinical testing of these universal sarbecovirus vaccines for pandemic preparedness.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas de DNA , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Imunidade Celular , SARS-CoV-2/genética , Epitopos de Linfócito T/genética
18.
Database (Oxford) ; 20232023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776561

RESUMO

The 2019 Novel Coronavirus (SARS-CoV-2) has infected millions of people worldwide and caused millions of deaths. The virus has gone numerous mutations to replicate faster, which can overwhelm the immune system of the host. Linear B-cell epitopes are becoming promising in prevention of various deadly infectious diseases, breaking the general idea of their low immunogenicity and partial protection. However, there is still no public repository to host the linear B-cell epitopes for facilitating the development vaccines against SARS-CoV-2. Therefore, we developed BCEDB, a linear B-cell epitopes database specifically designed for hosting, exploring and visualizing linear B-cell epitopes and their features. The database provides a comprehensive repository of computationally predicted linear B-cell epitopes from Spike protein; a systematic annotation of epitopes including sequence, antigenicity score, genomic locations of epitopes, mutations in different virus lineages, mutation sites on the 3D structure of Spike protein and a genome browser to visualize them in an interactive manner. It represents a valuable resource for peptide-based vaccine development. Database URL: http://www.oncoimmunobank.cn/bcedbindex.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2 , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/química , Vacinas contra COVID-19 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas Virais/química , Vacinas Virais/genética , Epitopos de Linfócito T/genética
19.
Genes Genomics ; 45(12): 1489-1508, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37548884

RESUMO

The discovery of the first infectious variant in Wuhan, China, in December 2019, has posed concerns over global health due to the spread of COVID-19 and subsequent variants. While the majority of patients experience flu-like symptoms such as cold and fever, a small percentage, particularly those with compromised immune systems, progress from mild illness to fatality. COVID-19 is caused by a RNA virus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach involved utilizing immunoinformatic to identify vaccine candidates with multiple epitopes and ligand-binding regions in reported SARS-CoV-2 variants. Through analysis of the spike glycoprotein, we identified dominant epitopes for T-cells and B-cells, resulting in a vaccine construct containing two helper T-cell epitopes, six cytotoxic T-cell epitopes, and four linear B-cell epitopes. Prior to conjugation with adjuvants and linkers, all epitopes were evaluated for antigenicity, toxicity, and allergenicity. Additionally, we assessed the vaccine Toll-Like Receptors complex (2, 3, and 4). The vaccine construct demonstrated antigenicity, non-toxicity, and non-allergenicity, thereby enabling the host to generate antibodies with favorable physicochemical characteristics. Furthermore, the 3D structure of the B-cell construct exhibited a ProSA-web z-score plot with a value of -1.71, indicating the reliability of the designed structure. The Ramachandran plot analysis revealed that 99.6% of the amino acid residues in the vaccine subunit were located in the high favored observation region, further establishing its strong candidacy as a vaccination option.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Proteoma , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/química , Vacinas contra COVID-19/genética , Reprodutibilidade dos Testes , Vacinas Virais/química , Vacinas Virais/genética
20.
Sci Rep ; 13(1): 12402, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524777

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis complex (MTBC) organisms, affects a range of humans and animals globally. Mycobacterial pathogenesis involves manipulation of the host immune system, partially through antigen presentation. Epitope sequences across the MTBC are evolutionarily hyperconserved, suggesting their recognition is advantageous for the bacterium. Mycobacterium tuberculosis var. bovis (MBO) strain Ravenel is an isolate known to provoke a robust immune response in cattle, but typically fails to produce lesions and persist. Unlike attenuated MBO BCG strains that lack the critical RD1 genomic region, Ravenel is classic-type MBO structurally, suggesting genetic variation is responsible for defective pathogenesis. This work explores variation in epitope sequences in MBO Ravenel by whole genome sequencing, and contrasts such variation against a fully virulent clinical isolate, MBO strain 10-7428. Validated MTBC epitopes (n = 4818) from the Immune Epitope Database were compared to their sequences in MBO Ravenel and MBO 10-7428. Ravenel yielded 3 modified T cell epitopes, in genes rpfB, argC, and rpoA. These modifications were predicted to have little effect on protein stability. In contrast, T cells epitopes in 10-7428 were all WT. Considering T cell epitope hyperconservation across MTBC variants, these altered MBO Ravenel epitopes support their potential contribution to overall strain attenuation. The affected genes may provide clues on basic pathogenesis, and if so, be feasible targets for reverse vaccinology.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Bovinos , Mycobacterium bovis/genética , Epitopos de Linfócito T/genética , Mycobacterium tuberculosis/genética , Tuberculose/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...